US009418089B2

a2 United States Patent

Goldstein et al.

US 9,418,089 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

(56)

MERGING OF SORTED LISTS USING ARRAY
PAIR

Applicant: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Inventors: Jonathan David Goldstein,
Woodinville, WA (US); Badrish

Chandramouli, Redmond, WA (US)

Assignee: Microsoft Technology Licensing, LL.C,

Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 637 days.

Appl. No.: 13/892,799

Filed: May 13, 2013

Prior Publication Data

US 2014/0337362 Al Nov. 13, 2014

Int. Cl1.
GO6F 17/30
GO6F 7/32
U.S. CL
CPC

(2006.01)
(2006.01)

GO6F 17/30312 (2013.01); GOGF 7/32
(2013.01); GO6F 2207/224 (2013.01)

Field of Classification Search

CPC GOGF 2207/224; GOGF 7/32

USPC 707/752

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,307,485 A * 4/1994 Bordonaro GO6F 7/32

6,366,911 B1* 4/2002 Christyccceoeveinns GO6F 7/36

707/737

8,261,043 B2* 9/2012 Inoue GO6F 9/30021

712/22

2006/0101086 Al* 5/2006 Ray ... GO6F 7/36
2008/0208861 Al 82008 Ray etal.

2010/0106711 Al 4/2010 Graefe
2013/0042092 Al* 2/2013 Inoue GO6F 9/30021
712/222

FOREIGN PATENT DOCUMENTS

GB 2284079 A 5/1995

OTHER PUBLICATIONS

“International Search Report & Written Opinion for PCT Patent
Application No. PCT/US2014/037616”, Mailed Date: Sep. 18,2014,
16 Pages.

Knuth, Donald E., ©“5.2.4:Sorting by Merging”, In Book—The Art of
Computer Programming. vol. 3: Sorting and Searching, Dec. 31,
1998, pp. 158-159.

(Continued)

Primary Examiner — Mahesh Dwivedi
(74) Attorney, Agent, or Firm — Nicholas Chen; Doug
Barker; Micky Minhas

(57) ABSTRACT

The formulation of a merged sorted list from multiple input
sorted lists in multiple phases using an array pair. Initially, the
first array is contiguously populated with the input sorted
lists. In the first phase, the first and second input sorted lists
are merged into a first intermediary merged list within the
second array. Each subsequent phase merges a prior interme-
diary merged list resulting from the prior phase and, a next
input sorted list in the first array to generate a next interme-
diary merged list, or a merged sorted list if there or no further
input in the first array. The intermediary merged lists alternate
between the first array and the second array from one phase to

5,179,699 A * 1/1993 IYer woovvvecceeomrrvrree. GO6F 736 the next phase.
5210,870 A * 5/1993 Baum ...oooo....... GO6F 15/78
340/146.2 13 Claims, 11 Drawing Sheets
300
301 5302 308
Position First Positicn Second Position Quiput
Input Cursor Input Cursor I Cursor I

" Ganerate Nex! intermediary
+ Merged Sorted Lisl 310

Populate With
Value At First
input Cuirsor

Flrst
Element Higher
Sort Prionty Than

Second

331

Populate With
Value At Second
Tnput Cursor

More
Elements At
First Input

r

Value To Merged
Sorted List

Advance First
Input Cusor And
Qutput Cursor

304
Finished Sort
Phase

Yee
333
Advange Second
Inpat Cursor And
Output Cursor

US 9,418,089 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Martinacezara, Albutiu Alfons Kemper“Massively Parallel Sort-
Merge Joins in Main Memory Multi-Core Database Systems” In
Proceedings of the VLDB Endowment, Jun. 10, 2012, 12 pages.
Satish, et al.,“Designing Efficient Sorting Algorithms for Manycore
GPUs”, In Proceedings of In 23rd IEEE International Parallel and
Distributed Processing Symposium,, May 12, 2009, 10 pages.
Zhang, Weiye,“Dynamic Memory Adjustment for External
Mergesort” In Proceedings of the 23rd VLDB Conference Athens
Greece, Aug. 25, 1997, 10 pages.

Omara, Emad,“Parallel merge sort using barrier”, Retrieved on: Feb.
12, 2013, pp. 4, Available at: http://blogs.msdn.com/b/pfxteam/
archive/2011/06/07/10171827 .aspx.

Inoue, et al.,“A high-performance sorting algorithm for multicore
single-instruction multiple-data processors”, Retrieved on: Feb. 12,
2013, pp. 27, Available at: http://www.research.ibm.com/trl/people/
inouehrs/pdf/SPE-SIMDsort.pdf.

“International Preliminary Report on Patentability Issued in PCT
Application No. PCT/US2014/037616”, Mailed Date: Aug. 18,
2015, 11 Pages.

* cited by examiner

US 9,418,089 B2

Sheet 1 of 11

Aug. 16, 2016

U.S. Patent

ort
HIOMIBN

| einbi4

f.fﬂ*

80t
SiRUUBYY
LIDREDIUNULG))

e

0ot
washg Bunndwios

SBIOA-UON

SHBIOA

vii
Aowsiy

i

{ah0858001d

U.S. Patent Aug. 16, 2016 Sheet 2 of 11

201 —~

Access Input Sorted Lists

202 -~

Arrange Input Sorted Lists in
Order Of Increasing Size

203 —~

Contiguously Populated Input
Sorted Lists into First Array

204 ~

Use First And Second Array
To Merge Sorted Lists

Figure 2

US 9,418,089 B2

U.S. Patent Aug. 16, 2016 Sheet 3 of 11 US 9,418,089 B2

300
¢ 301 5302 » 5 303
Position First Position Second Position Quiput
Input Cursor input Cursor Cursar
oY
e X
Generate Nest Intermediary
Merged Sorled List 310

Value At First Sart prgoﬁwg{han Vaiue At Second
tnput Cursor Second lnput Cursor

?

< 312
Last Values From

//More

More

‘“/Etemeﬂts At Input Sorted List No f/" Elements At
First Input Providad As Last Second input
Curser Value To Merged Curser

Soried List ?

£333

Advance Second
input Cursor And
Output Cursor

Advance Firat
fnput Cursor And
Qutput Cursor

o o o o e o o o o o e e o e o o e e o o o

Finished Sort
Phase

Figure 3

U.S. Patent Aug. 16, 2016 Sheet 4 of 11 US 9,418,089 B2

400A

411 412 413

oy '

5 8|2 4 7l1 2 3 4 9 ~401

402
421
Figure 4A
4008
411 412 413
5 8|2 4 7|1 2 3 & 940
2 -~ 402
421
Figure 4B
400C
411 412

5 8|2 4 7|1 2 3 4 g4

2 4 -~ 402

421

Figure 4C

U.S. Patent Aug. 16, 2016 Sheet 5 of 11 US 9,418,089 B2

5 8|2 4 7|1 2 3 4 g 401

2 4 5 . 402
421
Figure 4D
400E

5 8|12 4 7|1 2 3 4 9401

2 4 5 7 8 v 402

Figure 4E

U.S. Patent Aug. 16, 2016 Sheet 6 of 11 US 9,418,089 B2

3004
521 512

' '

5 802 4 1|1 2 3 4 g 401

2 4 5 7 8 402
511
Figure 5A
5008
521 512

1 8 2 4 7 1 2 3 4 g4

2 4 5 7 8 402
511
Figure 5B
500C
521 a1z

102 2 4 7 1 2 3 4 g pv40

2 4 5 7 8 - 402

Figure 5C

U.S. Patent Aug. 16, 2016 Sheet 7 of 11 US 9,418,089 B2

5060

192 2 4 7 1 2 3 4 g -4

2 4 5 7 8 402
a11
Figure 5D
500F
521 512

192 2 3 7 1 2 3 4 g 401

2 4 5 7 8 402
511
Figure SE
500F
521 512

2 3 4 g 40

2 4 7 8 - 402

Figure 5F

U.S. Patent Aug. 16, 2016 Sheet 8 of 11

1 2 2 3 4 4 2 3 4 9401

2 4 5 7 8 - 402
511
Figure 5G
500H
521 512

vy

1 2 2 3 4 4 5 3 4 940t

2 4 5 7 8 - 402

51t

Figure SH

US 9,418,089 B2

U.S. Patent Aug. 16, 2016 Sheet 9 of 11

521 512

US 9,418,089 B2

-

vy

- 401

- 402

511

Figure 51

-~ 401

- 402

Figure 5J

U.S. Patent Aug. 16, 2016 Sheet 10 of 11 US 9,418
800
< 601
Access Elements
e e Y
Form Sorted Lists §10
Any . .
Identify Sorted List
" Input Sorted Having Tail Member
Lists Have A Tail Of Lowest Priorit
Member OF Higher ¥

Priority
?

That Is Still Higher
Priority Than Element

No o 6
Create New Add Element As
Sorted List New Tail Member To
identified Sorfed List

Yes

?

Add Flement As
Head Member

More
Elements

Figure 6

,089 B2

U.S. Patent Aug. 16, 2016 Sheet 11 of 11 US 9,418,089 B2

Form Input Sorted Lists

Merge Input Sorted Lists

Figure 7

US 9,418,089 B2

1
MERGING OF SORTED LISTS USING ARRAY
PAIR

BACKGROUND

A list is a sequence of elements. A sorted list is a list that is
sorted according to a particular sorting priority (such as
alphabetical, increasing value, and so forth). A sorted list
guarantees that for every pair of consecutive elements, the
previous element satisfies the particular sorting priority with
respect to the subsequent element. For instance, suppose that
the list includes a sequence of integers, and that the sorting
priority is an increasing value sorting priority. In that case, the
list of integers would be sorted according to increasing value
if for every pair of consecutive integer in the sequence, the
subsequent integer is equal to or greater than the previous
integer. Each sorted list includes a head element, which is the
highest priority in the sorting priority, and thus the first ele-
ment in the sorted list. Each sorted list also includes a tail
element, which is a lowest priority in the sorting priority, and
thus the last element in the sorted list.

There is a particular method (referred to herein as a “pri-
ority queue method”) that was developed a number of
decades ago to merge input sorted lists into a merged sorted
list that is sorted according to the same sorting priority as the
input sorted lists. This priority queue method uses a priority
queue in order to formulate a merged list, and involves mul-
tiple phases of sorting operation. In the first phase, each of the
head elements from all of the input sorted lists are placed in
the priority queue, and thus each space in the priority queue
corresponds to an input sorted list. In each sorting phase, the
merged sorted list is extended by one element by moving the
highest priority element that is within the priority queue to the
end of the merged sorted list as a new tail element of the
merged sorted list. The highest unprocessed priority element
from the input sorted list corresponding to the space vacated
by this move is then processed by copying the element into
vacated space, thus completing a sorting phase.

SUMMARY

In accordance with at least one embodiment described
herein, a merged sorted list is formulated from multiple input
sorted lists in multiple phases using an array pair. Initially, the
first array is contiguously populated with the input sorted
lists. In the first phase, the first and second input sorted lists
are merged into a first intermediary merged list in the second
array. Each subsequent phase merges a prior intermediary
merged list resulting from the prior phase, a next input sorted
list in the first array to generate a next intermediary merged
list, or a final merged sorted list if there or no further input in
the first array. The intermediary merged lists alternate
between the first array and the second array from one phase to
the next phase.

In some embodiments, the merging technique may be par-
ticularly efficient for modern microprocessors that are more
efficient at sequential read and write operations, since the
merging may be performed in sequential operation through
the array pair. This Summary is not intended to identify key
features or essential features of the claimed subject matter,
nor is it intended to be used as an aid in determining the scope
of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more

20

25

40

45

55

65

2

particular description of various embodiments will be ren-
dered by reference to the appended drawings. Understanding
that these drawings depict only sample embodiments and are
not therefore to be considered to be limiting of the scope of
the invention, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 abstractly illustrates a computing system in which
some embodiments described herein may be employed;

FIG. 2 illustrates a flowchart of flowchart of a method for
formulating a merged sorted list in accordance with the prin-
ciples described herein;

FIG. 3 illustrates a flowchart of a method for processing
each sorting phase of the sorting operation of FIG. 2;

FIG. 4A through 4E show five sequential sorting state
operations associated with a first sorting phase of an example
in which a first input sorted list and a second input sorted list
are combined into a first intermediate merged sorted list;

FIG. 5A through 5] show ten sequential sorting state opera-
tions associated with a second sorting phase of the example in
which the first intermediate merged sorted list is merged with
a third input sorted list to form a second intermediate (and
possibly a final) merged sorted list;

FIG. 6 illustrates a flowchart of a method for accessing
input sorted lists; and

FIG. 7 illustrates a flowchart of a more generalized method
for processing elements to form sorted lists.

DETAILED DESCRIPTION

In accordance with embodiments described herein, the for-
mulation of a merged sorted list is described. The formulation
uses multiple input sorted lists and occurs in multiple phases
using an array pair. Initially, the first array is contiguously
populated with the input sorted lists. In the first phase, the first
and second input sorted lists are merged into a first interme-
diary merged list in the second array. Each subsequent phase
merges a prior intermediary merged list resulting from the
prior phase and, a next input sorted list in the first array to
generate a next intermediary merged list, or a merged sorted
list if there or no further input in the first array. The interme-
diary merged lists alternate between the first array and the
second array from one phase to the next phase.

Some introductory discussion of a computing system will
bedescribed with respect to FIG. 1. Then, the principles of the
merging of sorted lists will be described with respect to FIGS.
2 through 7.

Computing systems are now increasingly taking a wide
variety of forms. Computing systems may, for example, be
handheld devices, appliances, laptop computers, desktop
computers, mainframes, distributed computing systems, or
even devices that have not conventionally been considered a
computing system. In this description and in the claims, the
term “computing system” is defined broadly as including any
device or system (or combination thereof) that includes at
least one physical and tangible processor, and a physical and
tangible memory capable of having thereon computer-ex-
ecutable instructions that may be executed by the processor.
The memory may take any form and may depend on the
nature and form of the computing system. A computing sys-
tem may be distributed over a network environment and may
include multiple constituent computing systems.

As illustrated in FIG. 1, in its most basic configuration, a
computing system 100 includes at least one processing unit
102 and computer-readable media 104. The computer-read-
able media 104 may conceptually be thought of as including
physical system memory, which may be volatile, non-vola-

US 9,418,089 B2

3

tile, or some combination of the two. The computer-readable
media 104 also conceptually includes non-volatile mass stor-
age. If the computing system is distributed, the processing,
memory and/or storage capability may be distributed as well.

As used herein, the term “executable module” or “execut-
able component” can refer to software objects, routings, or
methods that may be executed on the computing system. The
different components, modules, engines, and services
described herein may be implemented as objects or processes
that execute on the computing system (e.g., as separate
threads). Such executable modules may be managed code in
the case of being executed in a managed environment in
which type safety is enforced, and in which processes are
allocated their own distinct memory objects. Such executable
modules may also be unmanaged code in the case of execut-
able modules being authored in native code such as C or C++.

In the description that follows, embodiments are described
with reference to acts that are performed by one or more
computing systems. If such acts are implemented in software,
one or more processors of the associated computing system
that performs the act direct the operation of the computing
system in response to having executed computer-executable
instructions. For example, such computer-executable instruc-
tions may be embodied on one or more computer-readable
media that form a computer program product. An example of
such an operation involves the manipulation of data. The
computer-executable instructions (and the manipulated data)
may be stored in the memory 104 of the computing system
100. Computing system 100 may also contain communica-
tion channels 108 that allow the computing system 100 to
communicate with other processors over, for example, net-
work 110.

Embodiments described herein may comprise or utilize a
special purpose or general-purpose computer including com-
puter hardware, such as, for example, one or more processors
and system memory, as discussed in greater detail below.
Embodiments described herein also include physical and
other computer-readable media for carrying or storing com-
puter-executable instructions and/or data structures. Such
computer-readable media can be any available media that can
be accessed by a general purpose or special purpose computer
system. Computer-readable media that store computer-ex-
ecutable instructions are physical storage media. Computer-
readable media that carry computer-executable instructions
are transmission media. Thus, by way of example, and not
limitation, embodiments of the invention can comprise at
least two distinctly different kinds of computer-readable
media: computer storage media and transmission media.

Computer storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other tangible stor-
age medium which can be used to store desired program code
means in the form of computer-executable instructions or
data structures and which can be accessed by a general pur-
pose or special purpose computer.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry desired
program code means in the form of computer-executable
instructions or data structures and which can be accessed by

30

40

45

4

ageneral purpose or special purpose computer. Combinations
of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
controller (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-
age media at a computer system. Thus, it should be under-
stood that computer storage media can be included in com-
puter system components that also (or even primarily) utilize
transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain
function or group of functions. The computer executable
instructions may be, for example, binaries, intermediate for-
mat instructions such as assembly language, or even source
code. Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located in both local and remote memory storage devices.

FIG. 2 illustrates a flowchart of flowchart of a method 200
for formulating a merged sorted list in accordance with the
principles described herein. The method 200, as well as any
other methods described herein may be performed by a com-
puting system such as the computing system 100 of FIG. 1. In
particular, if implemented in software, the processor(s) 102
execute computer-executable instructions present on a com-
puter-readable media (such as a computer-readable storage
media) constituting all or part of a computer program product.

For input, the method 200 uses multiple input sorted lists
(act 201) that are each sorted in accordance with a sorting
priority. A particular example will be used herein to aid in the
understanding of the principles described herein. In this par-
ticular example, there are three input sorted lists, each includ-
ing integer elements, which are sorted from lowest to highest.
Three sorted lists are as follows:

Sorted List A: 1,2,3,4,9

Sorted List B: 5, 8

Sorted List C: 2, 4,7

For this example, a correctly merged sorted list would be as
follows:

Merged Sorted List: 1,2,2,3,4,4,5,7,8,9

Before describing the merging operating in accordance
with the principles described herein, a mechanism for merg-
ing sorted lists in accordance with the prior art priority queue

US 9,418,089 B2

5

method will first be described. Part of the reason for describ-
ing this first mechanism will be to allow the reader to clearly
see how much more complex the merging process is in accor-
dance with the principles described herein as compared to the
prior art merging mechanism. Counterintuitively, the more
complex merging process in accordance with the principles
described herein is actually more efficiently performed by
modern processors that the conventional priority queue
method.

In the first phase of the priority queue method, a priority
queue having the same number of elements as there are input
sorted lists is first established and populated with the head
element from each of the input sorted list. When an element
from the input sorted list is populated into the priority queue,
the element is removed from the input sorted list. Thus, at the
beginning of the first sorting phase, the state of operation is as
follows:

Sorted List A: 2,3,4,9

Sorted List B: 8

Sorted List C: 4,7

Priority Queue: 1, 5,2

Thus, the first element in the priority queue is populated
with an element from input sorted list A, the second element
in the priority queue is populated with an element from input
sorted list B, and the last element in the priority queue is
populated with an element from input sorted list C.

In each sorting phase, the highest priority element is
removed from the priority queue and placed at the end of the
merged sorted list, and the space that is vacated is filled with
the next element from the corresponding sorted list. Thus,
after the first sorting phase, the sorting state is as follows:

Sorted List A: 3,4, 9

Sorted List B: 8

Sorted List C: 4,7

Priority Queue: 2, 5,2

Merged Sorted List: 1

Note that the integer 1 that was originally in sorted list A
has been removed from the priority queue as the head element
in the merged sorted list. To replenish the priority queue, the
next element (integer 2) in the sorted list A has been removed
from the sorted list A, and placed in the vacated left spot of the
priority queue.

Each sorting phase continues with this same process. Thus,
after the next sorting phase, the sorting state is as follows:

Sorted List A: 4, 9

Sorted List B: 8

Sorted List C: 4,7

Priority Queue: 3, 5,2

Merged Sorted List: 1, 2

Note that the integer 2 that was originally in sorted list A
has been removed from the priority queue as the new tail
element in the merged sorted list. To replenish the priority
queue, the next element (integer 3) in the sorted list A has
been removed from the sorted list A, and placed in the vacated
left spot of the priority queue. There were two integer ele-
ments of value 2 in the priority queue prior to the second
sorting phase. Either integer element of value 2 could have
been chosen consistent with this method.

Continuing, after the third sorting phase, the sorting state is
as follows:

Sorted List A: 4, 9

Sorted List B: 8

Sorted List C: 7

Priority Queue: 3, 5, 4

Merged Sorted List: 1, 2, 2

The integer 2 has been moved from the right spot (corre-
sponding to sorted list C) as the new tail element of the

10

15

20

25

30

35

40

45

50

55

60

65

6

merged sorted list. Furthermore, the next value of the sorted
list C (integer 4) has been moved to the vacated right spot.

After the fourth sorting phase, the sorting state is as fol-
lows:

Sorted List A: 9

Sorted List B: 8

Sorted List C: 7

Priority Queue: 4, 5, 4

Merged Sorted List: 1,2,2,3

The integer 3 has been moved from the left spot (corre-
sponding to sorted list A) as the new tail element of the
merged sorted list. Furthermore, the next value of the sorted
list A (integer 4) has been moved to the vacated right spot.

After the fifth sorting phase, the sorting state is as follows:

Sorted List A: *

Sorted List B: 8

Sorted List C: 7

Priority Queue: 9, 5, 4

Merged Sorted List: 1, 2,2, 3, 4

The integer 4 has been moved from the left spot (corre-
sponding to sorted list A) as the new tail element of the
merged sorted list. Furthermore, the next value of the sorted
list A (integer 4) has been moved to the vacated right spot.
This leaves the sorted list A empty as represented by the
asterisk.

After the sixth sorting phase, the sorting state is as follows:

Sorted List A: *

Sorted List B: 8

Sorted List C: *

Priority Queue: 9, 5,7

Merged Sorted List: 1,2, 2,3, 4, 4

The integer 4 has been moved from the right spot (corre-
sponding to sorted list C) as the new tail element of the
merged sorted list. Furthermore, the next value of the sorted
list C (integer 7) has been moved to the vacated right spot.
This leaves the sorted list C also empty as represented by the
asterisk.

After the seventh sorting phase, the sorting state is as
follows:

Sorted List A: *

Sorted List B: *

Sorted List C: *

Priority Queue: 9, 8,7

Merged Sorted List: 1,2,2,3,4,4,5

The integer 5 has been moved from the center spot (corre-
sponding to sorted list B) as the new tail element of the
merged sorted list. Furthermore, the next value of the sorted
list B (integer 8) has been moved to the vacated right spot.
This leaves the sorted list B also empty as represented by the
asterisk. As all input sorted lists are now empty, the input
sorted lists will not be shown in the remaining of the phases of
this method.

After the eighth sorting phase, the sorting state is as fol-
lows:

Priority Queue: 9, 8, *

Merged Sorted List: 1,2,2,3,4,4,5,7

The integer 7 has been moved from the right spot (corre-
sponding to sorted list C) as the new tail element of the
merged sorted list. As there are no further elements within the
sorted list C, the right spot of the priority queue remains
empty as represented by the asterisk.

After the ninth sorting phase, the sorting state is as follows:

Priority Queue: 9, *, *

Merged Sorted List: 1,2,2,3,4,4,5,7,8

The integer 8 has been moved from the center spot (corre-
sponding to sorted list B) as the new tail element of the
merged sorted list. As there are no further elements within the

US 9,418,089 B2

7

sorted list B, the center spot of the priority queue remains
empty as represented by the asterisk.

After the tenth sorting phase, the sorting state is as follows:

Priority Queue: *, *, *

Merged Sorted List: 1,2,2,3,4,4,5,7,8,9

The integer 9 has been moved from the center spot (corre-
sponding to sorted list A) as the new tail element of the
merged sorted list. This leaves the priority queue empty, and
also completes the merged sorted list.

This priority queue method does merge sorted lists, but it is
not efficient to perform on a computing system. In accordance
with the principles described herein, merging of the input
sorted list is performed in a manner that is more efficiently
performed by modern processors. In particular, the sorting is
performed using a pair of arrays, and using largely sequential
read and write operations. Furthermore, the sorting lends
itself to more efficient processing by multiple cores and par-
allel implementations. For instance, the sorting may be per-
formed across parallel or different cores, or across multiple
machines.

Returning to method 200 and the particular example, recall
that after the input sorted lists are accessed (act 201) in the
example, the sorting state is as follows:

Sorted List A: 1,2,3,4,9

Sorted List B: 5, 8

Sorted List C: 2,4, 7

The input sorted lists are then optionally arranged in order
of increasing size (act 202). The input sorted lists A through
C might represent all of the input sorted lists that are to be
merged. However, in one implementation, they might repre-
sent just a subset of the input sorted lists to be merged.
Processing the input sorted lists as subsets may have an
advantage of reducing a number of writes involved with the
merging operation.

For instance, consider the case in which there are six sorted
lists (a, b, ¢, d, e and f) that are to be sorted. Suppose thatinput
sorted list a has 5 elements, input sorted list b has 6 elements,
and input sorted lists ¢ through f'each have 7 elements. In the
method described below, merging input sorted lists a and b (to
form sorted list ab) would involve 11 writes, one for each
element in the combined sorted list. Merging input sorted list
ab and input sorted list c would result in 18 writes (as there are
11 elements in input sorted list ab and 7 in input sorted list ¢)
to generate sorted list abc. Merging input sorted list abc and
input sorted list d would result in 25 writes (as there are 18
elements in input sorted list abc and 7 in input sorted list d) to
generate sorted list abed. Merging input sorted list abcd and
input sorted list e would result in 32 writes (as there are 25
elements in input sorted list abcd and 7 in input sorted list e)
to generate sorted list abcde. Merging input sorted list abcde
and input sorted list f would result in 39 writes (as there are 32
elements in input sorted list abcde and 7 in input sorted list ef)
to generate the final merged sorted list abedef. Accordingly,
using this technique, there would be a total of 125 writes
(11+18425+32+439).

However, a reduced number of writes might be accom-
plished by first partitioning the input sorted lists into subsets.
For instance, suppose again the input sorted list a is merged
with input sorted list b using 11 writes the same as above to
generate merged sorted list ab. However, input sorted list ¢
might be merged with input sorted list d to generate merged
sorted list cd using 14 writes (since input sorted lists c and d
each have 7 elements). Input sorted list e might be merged
with input sorted list f to generate merged sorted list ef also
using 14 writes (since input sorted lists e and f each have 7
elements). This would allow for some parallelism as merged
sorted lists ab, cd, and ef could be formed in parallel. Input

10

15

20

25

30

40

45

50

55

60

65

8

sorted list ab may then be combined with input sorted list cd
to generate merged list abcd using 25 writes (since input
sorted list ab has 11 elements and input sorted list cd has 14
elements). Input sorted list abcd may then be merged with
input sorted list ef to generate the final merged list abedef
using 39 writes (since input sorted list abcd has 25 elements
and input sorted list ef has 14 elements). Accordingly, using
this subsetting of the input sorted lists, there would be a total
of' 103 writes (11+14+14+25+439). Furthermore, subsetting in
this way allowed for some parallel processing to occur.

In the example herein, in which input sorted lists A, B and
C are discussed, the input sorted lists could represent the
entire set of input sorted lists, or could represent just a subset
of the input sorted lists. In the latter case, the described
technique may then operate on the output merged sorted list
as a new input sorted list using the same technique.

In any case, referring only to the input sorted lists A, B and
C, sorted list B is smallest and thus would be arranged first in
the sequence. The sorted list C is the next smallest and thus
would be arranged next in the sequence. The sorted list A is
the largest and thus would be the last in the sequence. Act 202
is an optional optimization that serves to reduce the number of
copy operations between the two arrays in the array pair.

A first array of the pair is then contiguously populated with
the input sorted lists (act 203). The result would be as follows:

First Array: 5, 8,2,4,7,1,2,3,4,9

Thefirstarray and a second array are then used to merge the
multiple input sorted lists (act 204), which merging occurs in
multiple phases. For instance, FIG. 4A illustrates a sorting
state at the beginning of the first sorting phase in which the
sorted lists B, C and A are contiguously placed within the first
array 401. The second array 402 is of the same size as the first
array 401, but is empty. For instance, if the method 200 is
performed by the computing system 100 of FIG. 1, the
method first array 401 and the second array 402 may be
located in memory of the computer-readable media 104.

In the first phase, the first two sorted lists in the first array
are formed into a first intermediary merged sorted list located
in the second array. In the second phase, the first intermediary
merged sorted list is merged with the third sorted list in the
first array to form a second intermediary sorted list in the first
array. However, if there were only two sorted lists to merge,
there would be no such second phase. Note that the location of
the current intermediary merged sorted list alternates
between the arrays. Thus, for odd numbered phases, the
resulting intermediary merged sorted list is located in one of
the arrays, and for even numbered phases, the resulting inter-
mediary merged sorted list is located in another of the array.
More generally stated, each phase after the first phase merges
the prior intermediary merged sorted list resulting from the
prior phase into the next input sorted list to generate the next
intermediary merged sorted list (or the final merged sorted list
if there or no further input sorted lists to process).

FIG. 3 illustrates a flowchart of a method 300 for process-
ing each sorting phase of the sorting operation of act 204 of
FIG. 2. A first input cursor is established (act 301) at the first
element of the first input sorted list in the first array (if the first
sorting phase) or at the first element of the prior intermediary
merged sorted list (if a subsequent sorting phase). For
instance, FIG. 4A illustrates a sorting state at the beginning of
the first phase of sorting in which there is a first input cursor
411 positioned at the first element of the input sorted list B,
which is the first input sorted list that is contiguously placed
in the first array 401. The first array 401 and the second array
402 are memory locations.

A second input cursor is established (act 302) at the first
element in the next sorted list in the first array that has not yet

US 9,418,089 B2

9

been processed. In the case of the first phase, this would be the
second input sorted list in the contiguous sorted lists. In the
case of FIG. 4A, in which the sequence includes sorted lists B,
C and A contiguously positioned in that order, the cursor 412
is positioned at the first element of the input sorted list C. For
convenience, a third input cursor 413 is also shown positioned
at the first element of the last input sorted list (sorted list A) in
the first array.

Anoutput cursor is established (act 303) at the beginning of
the second array (if the sort phase is the first sort phase) or at
the beginning of the opposite array as that which contains the
prior intermediary merged sorted list (if the sort phase is after
the first sort phase). For instance, in FIG. 4A, output cursor
421 is positioned at the beginning of the empty second array
402.

The method 300 then involves an act of generating a next
intermediary merged sorted list (act 310) by sequentially
assigning values to the elements of the next intermediary
sorted list. Accordingly, the content of act 310 may be per-
formed for each element of the next intermediary sorted list.
This will be demonstrated referring to the specific example
with reference to FIGS. 4A through 4E.

The value of the element pointed to by the first input cursor
is compared with the value at the element pointed to by the
second input cursor (decision block 311). For instance, in
FIG. 4A, the integer 5 pointed to by first input cursor 411 is
compared with the integer 2 pointed to by the second input
cursor 412.

If the value at the element pointed to by the first input
cursor satisfies a sorting priority with respect to the value at
the element pointed to by the second input cursor (“Yes” in
decision block 311), the corresponding element of the next
intermediary merged sorted list is populated with the value
pointed to by the first input cursor (act 321). It is then deter-
mined whether or not there are more elements in the first
sorted list (if this is the first sort phase) or the prior interme-
diary merged sorted list (if this is a subsequent sort phase)
(decision block 322). This decision need not be made
expressly with every iteration of decision block 322. For
instance, the check need not be performed if act 310 has not
yet been performed for at least a number of times that is equal
to or less than a minimum length of either of the input sorted
lists. However, even if this check is not expressly performed,
the check is still implicit by referencing that the number of
times that act 310 has been performed is still equal to or less
than this minimum number. If there are not any further ele-
ments (“No” in decision block 322), then the remaining val-
ues of the opposite sorted list beginning from the second input
cursor is/are populated as the last value of the next interme-
diary merged sorted list (act 312), and that sorting phase ends
(act 304). If there are further elements (“Yes” in decision
block 322), then the first input cursor is moved to the next
neighboring element if the first sorted list (if this is the first
sort phase) or the next intermediary merged sorted list (if this
is a subsequent sort phase) (act 323). Furthermore, the output
cursor is positioned at the next element in the first sorted list
(if this is the first sort phase) or the next intermediary merged
sorted list (if this is a subsequent sort phase) (also act 323).

If the value at the element pointed to by the first input
cursor does not satisfy a sorting priority with respect to the
value at the element pointed to by the second input cursor
(“No” in decision block 311), the corresponding element of
the next intermediary merged sorted list is populated with the
value pointed to by the second input cursor (act 331). It is then
determined whether or not there are more elements left in the
next input sorted list (decision block 332). If not, the remain-
ing values of the opposite sorted list beginning from the first

10

15

20

25

30

35

40

45

50

55

60

65

10

input cursor is/are populated as the last value of the next
intermediary merged sorted list (act 312), and that sorting
phase ends (act 304). If there are further elements (“Yes” in
decision block 332), then the second input cursor is moved to
the next neighboring element of the next sorted list (act 333).
Furthermore, the output cursor is positioned at the next ele-
ment in the next intermediary merged sorted list (also act
333).

For instance, in FIG. 4A, the integer 5 pointed to by the
input cursor 411 is not equal to or less than the integer 2
pointed to by the input cursor 412 (“No” in decision block
311). Accordingly, the corresponding element of the next
intermediary merged sorted list (i.e., the element pointed to
by the output cursor 421) is populated with the value 2
pointed to by the input cursor 412 (act 331). There are more
elements within the second sorted list (“Yes” in decision
block 332), and thus the second input cursor 412 and the
output cursor 421 are both advanced (act 333). The resulting
sorting state 4008 is illustrated in FIG. 4B.

In FIG. 4B, the integer 5 pointed to by the input cursor 411
is not equal to or less than the integer 4 pointed to by the input
cursor 412 (“No” in decision block 311). Accordingly, the
corresponding element at the output cursor 421 is populated
with the value 4 pointed to by the input cursor 412 (act 331).
There are more elements within the second sorted list (“Yes”
in decision block 332), and thus the second input cursor 412
and the output cursor 421 are both advanced (act 333). The
resulting sort state 400C is illustrated in FIG. 4C.

In FIG. 4C, the integer 5 pointed to by the input cursor 411
is equal to or less than the integer 7 pointed to by the input
cursor 412 (“Yes” in decision block 311). Accordingly, the
corresponding element at the output cursor 421 is populated
with the value 5 pointed to by the input cursor 411 (act 321).
There are more elements within the first sorted list (“Yes™ in
decision block 322), and thus the first input cursor 411 and the
output cursor 421 are both advanced (act 333). The resulting
sort state 400D is illustrated in FIG. 4D.

In FIG. 4D, the integer 8 pointed to by the input cursor 411
is not equal to or less than the integer 7 pointed to by the input
cursor 412 (“No” in decision block 311). Accordingly, the
corresponding element at the output cursor 421 is populated
with the value 7 pointed to by the input cursor 412 (act 331).
There are not more elements within the second sorted list
(“No” in decision block 332). Accordingly, the last integer
value 8 from the first input sorted list is populated into the
final value of the next intermediary merged sorted list (act
312), thus completing the first sort phase (act 314). The result-
ing sort state 400E is illustrated in FIG. 4E. The position of the
input cursors and the output cursors are not shown in FIG. 4E,
as they have completed their function for this first sort phase.
The method would end here if there were only two input
sorted lists. Although the first input sort list B and the second
input sort list C are still included in the first array 401, they
will not affect subsequent sort operations as they will be
simply written over during subsequent sort phases. Accord-
ingly, processing need not be wasted deleting the first input
sort list B and the second input sort list C from the first array
401.

The second sort phase may then proceed comparing again
the particular example to FIG. 3. Again, a first input cursor is
established (act 301). Since this is a subsequent sort phase, the
first input cursor is established at the first element of the prior
intermediary merged sorted list that resulted from the prior
sort phase. For instance, FIG. 5A illustrates a sorting state
500A at the beginning of the first phase of sorting in which
there is a first input cursor 511 positioned at the first element
of the first intermediary merged sorted list.

US 9,418,089 B2

11

A second input cursor is established (act 302) at the first
element in the next sorted list in the first array that has not yet
been processed. In the case of the second phase, this would be
the third input sorted list in the contiguous sorted lists. In the
case of FIG. 5A, in which the sequence includes sorted lists B,
C and A contiguously positioned in that order, the cursor 512
is positioned at the first element of the input sorted list A.

Anoutput cursor is established (act 303) at the beginning of
the opposite array as that which contains the prior intermedi-
ary merged sorted list (if the sort phase is after the first sort
phase). For instance, in FIG. 5A, since the first intermediary
merged sorted list is in the second array 402, the output cursor
521 is placed at the beginning of the first array 401.

The method 300 then involves an act of generating a next
intermediary merged sorted list (act 310) by sequentially
assigning values to the elements of the next intermediary
sorted list. Accordingly, the content of act 310 may be per-
formed for each element of the next (i.e., the second) inter-
mediary sorted list. This will be demonstrated referring to the
specific example with reference to FIGS. 5A through 5J.

The value of the element pointed to by the first input cursor
is compared with the value at the element pointed to by the
second input cursor (decision block 311). For instance, in
FIG. 5A, the integer 2 pointed to by the input cursor 511 is not
equal to or less than the integer 1 pointed to by the input cursor
512 (“No” in decision block 311). Accordingly, the corre-
sponding element of the second intermediary merged sorted
list (i.e., the element pointed to by the output cursor 521) is
populated with the value 1 pointed to by the input cursor 512
(act331). There are more elements within the third sorted list
(“Yes” in decision block 332), and thus the second input
cursor 512 and the output cursor 521 are both advanced (act
333). The resulting sorting state 500B is illustrated in FIG.
5B.

In FIG. 5B, the integer 2 pointed to by the input cursor 511
is equal to or less than the integer 2 pointed to by the input
cursor 512 (“Yes” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 2 pointed to by the input cursor 511 (act 321).
There are more elements within the first intermediary merged
sorted list (“Yes” in decision block 322), and thus the first
input cursor 511 and the output cursor 521 are both advanced
(act 323). The resulting sort state 500C is illustrated in FIG.
5C.

In FIG. 5C, the integer 4 pointed to by the input cursor 511
is not equal to or less than the integer 2 pointed to by the input
cursor 512 (“No” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 2 pointed to by the input cursor 512 (act 331).
There are more elements within the third sorted list (“Yes” in
decision block 332), and thus the second input cursor 512 and
the output cursor 521 are both advanced (act 333). The result-
ing sort state 500D is illustrated in FIG. 5D.

In FIG. 5D, the integer 4 pointed to by the input cursor 511
is not equal to or less than the integer 3 pointed to by the input
cursor 512 (“No” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 3 pointed to by the input cursor 512 (act 331).
There are more elements within the third sorted list (“Yes” in
decision block 332), and thus the second input cursor 512 and
the output cursor 521 are both advanced (act 333). The result-
ing sort state S00E is illustrated in FIG. 5E.

In FIG. 5E, the integer 4 pointed to by the input cursor 511
is equal to or less than the integer 4 pointed to by the input
cursor 512 (“Yes” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 4 pointed to by the input cursor 511 (act 321).

10

15

20

25

30

35

40

45

50

55

60

65

12

There are more elements within the first intermediary merged
sorted list (“Yes” in decision block 322), and thus the first
input cursor 511 and the output cursor 521 are both advanced
(act 323). The resulting sort state 500F is illustrated in FIG.
5F.

In FIG. SF, the integer 5 pointed to by the input cursor 511
is not equal to or less than the integer 4 pointed to by the input
cursor 512 (“No” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 4 pointed to by the input cursor 512 (act 331).
There are more elements within the third sorted list (“Yes” in
decision block 332), and thus the second input cursor 512 and
the output cursor 521 are both advanced (act 333). The result-
ing sort state 500G is illustrated in FIG. 5G.

In FIG. 5G, the integer 5 pointed to by the input cursor 511
is equal to or less than the integer 9 pointed to by the input
cursor 512 (“Yes” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 5 pointed to by the input cursor 511 (act 321).
There are more elements within the first intermediary merged
sorted list (“Yes” in decision block 322), and thus the first
input cursor 511 and the output cursor 521 are both advanced
(act 323). The resulting sort state S00H is illustrated in FIG.
5H.

In FIG. 5H, the integer 7 pointed to by the input cursor 511
is equal to or less than the integer 9 pointed to by the input
cursor 512 (“Yes” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 7 pointed to by the input cursor 511 (act 321).
There are more elements within the first intermediary merged
sorted list (“Yes” in decision block 322), and thus the first
input cursor 511 and the output cursor 521 are both advanced
(act323). The resulting sort state 5001 is illustrated in FIG. 51.

In FIG. 51, the integer 8 pointed to by the input cursor 511
is equal to or less than the integer 9 pointed to by the input
cursor 512 (“Yes” in decision block 311). Accordingly, the
corresponding element at the output cursor 521 is populated
with the value 8 pointed to by the input cursor 511 (act 321).
There are not more elements within the first intermediary
merged sorted list (“No” in decision block 322). Accordingly,
the last integer value 9 from the third input sorted list is
populated into the final value of the second intermediary
merged sorted list (act 312), thus completing the second sort
phase (act 314). The resulting sort state 50017 is illustrated in
FIG. 5], with the second intermediary merged sorted list (and
the final merged list if there were only the three input sorted
list) is included within the first array. The position of the input
cursors and the output cursors are not shown in FIG. 5J, as
they have completed their function for this sort phase.
Although the first intermediary merged sorted list is still
included in the second array 402, these values will not affect
subsequent sort operations (if there are subsequent sort opera-
tions due to a fourth or more input sorted list) as they will be
simply written over during subsequent sort phases. Accord-
ingly, processing is not wasted deleting the first intermediary
merged sorted list from the second array 402.

Method 300 may be repeated for more sorted input lists if
there are more input sorted list. Each sorted input list results
in an additional sort phase. For instance, in the case of there
being 3 input sorted lists, there were two sort phases and one
intermediary merged sorted list, and one final merged sorted
list. More generally speaking, if there are N input sorted lists
(where N is an integer greater than one), then there will be
N-1 sort phases, and N-2 intermediary merged sorted lists.
The location of the intermediary merged sorted list bounces
back and forth from one array to the next from one sort phase
to the next.

US 9,418,089 B2

13

Accordingly, both the prior art priority queue method and
the method using two pairs of arrays (hereinafter, the “array
pair method”) have been described. It will be apparent from
the length of space needed to describe both methods, that
there is more descriptive and intuitive complexity associated
with the array pair method.

This might lead one to conclude that the array pair method
is much less efficient than the priority queue method. While
this may be the case for mental calculations, this is not the
case when implemented using modern processors. For
instance, the vast majority of read and write operations asso-
ciated with the array pair method are performed sequentially.
Furthermore, there are only two arrays being operated upon,
making this mechanism efficient for modern processors. Fur-
thermore, parallelisms may be exploited using the array pair
method as mentioned above.

FIG. 6 illustrates a flowchart of a method 600 for accessing
input sorted lists. The method 600 represents an example of
the act 201 of FIG. 2. The method 600 includes an act of
accessing a plurality of elements (act 601). Such elements
may be unsorted. For instance, consider the following
example 10 element sequence:

Unsorted Sequence: 5,2,1,4,2,3,8,7,7,6

The multiple elements are then used to formulate multiple
input sorted lists (act 610). The contents of act 610 are per-
formed one element at a time proceeding through the ele-
ments accessed in act 601. For each element, it is determined
whether or not there are any sorted lists that have a tail
member that has a higher priority in a sorting priority than the
corresponding element (decision block 611). If there are not
any sorted lists that have a tail member than has a higher
priority in the sorting priority than the corresponding element
(“No” in decision block 611), a new sorted list is created (act
612) and the corresponding element as a head element of the
new sorted list (act 613). Since at this point, the just added
element is the only member of the sorted list, the added
element also happens to be the tail element of the new sorted
list.

If there are one or more input sorted lists that have a tail
member that has a higher priority in the sorting priority than
the corresponding element (“Yes” in decision block 611), the
corresponding element is added to one of the one or more
sorted lists that do have a tail member of a higher sorting
priority than the corresponding element. In one embodiment,
the method selects whichever of the sorted lists that has a tail
member that has a lowest priority in the sorting priority, while
still being a higher priority than the corresponding element
(act 614). The corresponding element is then added as a new
tail member to the selected sorted list (act 615).

The act 610 will now be described with respect to the
example sequence of unsorted element, listed again as fol-
lows:

Unsorted Sequence: 5,2,1,4,2,3,8,7,7,6

In this example, the sorting priority will be such that any
subsequent element that has a value that is equal to or greater
than a previous element will be deemed to how a lower
priority than the previous element. Upon encountering the
element 5, there are not yet any sorted lists, and thus there
inherently are not any sorted lists that have a tail member of
higher priority than this element (“No” in decision block
611). Thus, a new sorted list is created (act 612) (which will
be called “Sorted List 1), and the element 5 is added as the
head member of that new sorted list (act 613). The corre-
sponding sorted list formation state would then appear as
follows:

Unsorted Sequence: 2, 1,4,2,3,8,7,7,6

Sorted List I: 5

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next
element in the unsorted sequence (i.e., element 2) is evalu-

40

45

50

14

ated. There are not any sorted lists that have a tail member that
has a higher priority in the sorting priority than element 2
(“No” in decision block 612), and thus a new sorted list is
created (act 612) (which will be called “Sorted List I1”°), and
the element 2 is added as the head member of that new sorted
list. The corresponding sorted list formation state would then
appear as follows:

Unsorted Sequence: 1,4,2,3,8,7,7,6

Sorted List I: 5

Sorted List II: 2

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next
element in the unsorted sequence (i.e., element 1) is evalu-
ated. There are not any sorted lists that have a tail member that
has a higher priority in the sorting priority than element 1
(“No” in decision block 612), and thus a new sorted list is
created (act 612) (which will be called “Sorted List I1I”), and
the element 1 is added as the head member of that new sorted
list. The corresponding sorted list formation state would then
appear as follows:

Unsorted Sequence: 4,2,3,8,7,7,6

Sorted List I: 5

Sorted List II: 2

Sorted List I1I: 1

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next
element in the unsorted sequence (i.e., element 4) is evalu-
ated. There are two sorted lists that have a tail member that
have a higher priority in the sorting priority than element 4
(“Yes” in decision block 612) (namely, Sorted Lists II and
IIT). Thus, the sorted list that has the lowest priority tail
member of Sorted Lists I and II1 is selected (which would be
Sorted List IT) (act 614), and the element 4 is added as the new
tail member for Sorted List II (act 615). The corresponding
sorted list formation state would then appear as follows:

Unsorted Sequence: 2,3,8,7,7,6

Sorted List I: 5

Sorted List II: 2, 4

Sorted List I1I: 1

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next
element in the unsorted sequence (i.e., element 2) is evalu-
ated. There is only one sorted list that has a tail member that
has a higher priority in the sorting priority than element 2
(“Yes” in decision block 612) (namely, Sorted List III). Thus,
the Sorted List III is selected (act 614), and the element 2 is
added to the Sorted List III (act 615). The corresponding
sorted list formation state would then appear as follows:

Unsorted Sequence: 3,8, 7,7, 6

Sorted List I: 5

Sorted List II: 2, 4

Sorted List 11I: 1, 2

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next
element in the unsorted sequence (i.e., element 3) is evalu-
ated. There is only one sorted list that has a tail member that
has a higher priority in the sorting priority than element 3
(“Yes” in decision block 612) (namely, Sorted List III). Thus,
the Sorted List III is selected (act 614), and the element 3 is
added to the Sorted List III (act 615). The corresponding
sorted list formation state would then appear as follows:

Unsorted Sequence: 8,7, 7, 6

Sorted List I: 5

Sorted List II: 2, 4

Sorted List I1I: 1, 2, 3

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next

US 9,418,089 B2

15

element in the unsorted sequence (i.e., element 8) is evalu-
ated. All sorted lists have a tail member that has a higher
priority in the sorting priority than element 8 (“Yes” in deci-
sion block 612). Thus, the sorted list that has the lowest
priority tail member of the sorted list (which would be Sorted
List I) is selected (act 614), and the element 8 is added as the
new tail member for Sorted List I (act 615). The correspond-
ing sorted list formation state would then appear as follows:

Unsorted Sequence: 7,7, 6

Sorted List I: 5, 8

Sorted List I1: 2, 4

Sorted List I11: 1, 2, 3

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next
element in the unsorted sequence (i.e., element 7) is evalu-
ated. There are two sorted lists that have a tail member that has
a higher priority in the sorting priority than element 7 (“Yes”
in decision block 612) (namely, Sorted Lists Il and IIT). Thus,
the sorted list that has the lowest priority tail member of
Sorted Lists I and II1 is selected (which would be Sorted List
II) (act 614), and the element 7 is added as the new tail
member for Sorted List II (act 615). The corresponding sorted
list formation state would then appear as follows:

Unsorted Sequence: 7, 6

Sorted List I: 5, 8

Sorted List 11: 2,4, 7

Sorted List I11: 1, 2, 3

There are more elements in the unsorted sequence to assign
to a sorted list (“Yes” in decision block 616), and thus the next
element in the unsorted sequence (i.e., element 7) is evalu-
ated. There are two sorted lists that have a tail member that has
a higher priority in the sorting priority than element 7 (“Yes”
in decision block 612) (namely, Sorted Lists Il and IIT). Thus,
the sorted list that has the lowest priority tail member of
Sorted Lists I and II1 is selected (which would be Sorted List
II) (act 614), and the element 7 is added as the new tail
member for Sorted List II (act 615). The corresponding sorted
list formation state would then appear as follows:

Unsorted Sequence: 6

Sorted List I: 5, 8

Sorted List I1: 2,4, 7,7

Sorted List I11: 1, 2, 3

There is one more element in the unsorted sequence to
assign to a sorted list (“Yes” in decision block 616), and thus
the last element in the unsorted sequence (i.e., element 6) is
evaluated. There is only one sorted list that has a tail member
that has a higher priority in the sorting priority than element 3
(“Yes” in decision block 612) (namely, Sorted List III). Thus,
the Sorted List I1I is selected (act 614), and the element 6 is
added to the Sorted List III (act 615). The corresponding
sorted list formation state would then appear as follows:

Unsorted Sequence: *

Sorted List I: 5, 8

Sorted List I1: 2,4, 7,7

Sorted List I1I: 1, 2, 3, 6

Since the unsorted sequence is now empty (“No” in deci-
sion block 616), the method 600 ends. Note that at each point,
the sorted lists are ordered in sequence of lower to higher
priority of each tail member in the sorting priority. Acts 611
through 616 have actually been previously publicly disclosed
as part of the “Patience Method”.

However, as an improvement to the formation of the input
sorted list, the principles described herein may mark the last
sorted list to which a prior element was added from the
unsorted sequence. The comparison of the next element from
the unsorted sequence is then begun by comparing with the
tail member of that marked sorted list. If the new element has

10

15

20

25

30

35

40

45

50

55

60

16

a higher sorting priority than the tail member of the marked
sorted list, a comparison of the element from the unsorted
sequence is performed against a previous list (if there exists a
previous list). If the new element has a higher sorting priority
than the tail member of that previous list (or if there is not a
previous list, then the new element is added as a new tail
member of that marked list. Otherwise, the compassion
operation moves to the next sorted list in the sequence in a
direction of decreasing priority in the sorting priority (e.g.,
upward from Sorted List 111 to Sorted List I, or upwards from
Sorted List II to Sorted List I in the example above) and the
new element is compared against the tail member in that next
lower priority tail member sorted list. If the new element has
a lower sorting priority than the tail member of the marked
sorted list, the comparison moves to the next sorted list in the
sequence in a direction of increasing priority in the sorting
priority (e.g., downward from Sorted List Ito Sorted List II, or
downwards from Sorted List II to Sorted List III in the
example above) and the new element is compared against the
tail member in that next higher priority tail member sorted
list.

FIG. 7 illustrates a flowchart of a more generalized method
700 for processing elements to form sorted lists. The method
700 includes an act of forming multiple input sorted lists (act
701) followed by an act of merging the input sorted lists into
a merged sorted list (act 702). An example of the act 701 has
been described above with respect to FIG. 6, but the act 701 is
not limited to that method. An example of the act 702 has been
described with respect to FIGS. 2 and 3, although the act 702
is not limited to that method.

The principles described herein may operate with a stream
of'elements. In this case, perhaps there is not enough memory
to hold all ofthe elements in the stream. Accordingly, perhaps
only a portion of the elements are subjected to the method 700
to formulate a first merged sorted list. For instance, in one of
the above examples, the unsorted sequence of elements
include 10 elements as follows:

Unsorted Sequence: 5,2, 1,4,2,3,8,7,7,6

However, suppose that there was only room to process the
first 8 elements of the unsorted sequence as follows:

Unsorted Sequence (Part 1): 5,2, 1,4,2,3,8,7

Applying the method 600 (an example of act 701), the
processing would proceed the same as the first eight elements
as described above in order to result in the following sorted
input list.

Sorted List I: 5, 8

Sorted List II: 2, 4,7

Sorted List I1I: 1, 2, 3

Act 702 may then be performed to formulate a merged
sorting list as follows:

Merged Sorted List: 1,2,2,3,4,5,7,8

The higher prioritized values of the merged sorted list are
then persisted in storage. For instance, suppose that the high-
est priority half (e.g., those of values of 3 or less) of the
merged sorted list are preserved in persistent storage. The
corresponding persisted values are then removed from the
input sorted list. This would result in the following relevant
state:

Sorted List I (in Memory): 5, 8

Sorted List II (in Memory): 4, 7

Sorted List III (in Memory): * (empty)

Persisted Elements: 1,2, 2, 3

The additional elements from the unsorted sequence
(namely, 7 and 6) are then processed through act 701. For
instance, using method 600, the new element 7 would be
assigned to the Sorted List 11, resulting in the following state:

Sorted List I (in Memory): 5, 8

Sorted List II (in Memory): 4,7, 7

Sorted List III (in Memory): * (empty)

US 9,418,089 B2

17

Persisted Elements: 1,2, 2,3

The last element 6 of the unsorted sequence would then be
assigned to the

Sorted List I1I resulting in the following state:

Sorted List I (in Memory): 5, 8

Sorted List II (in Memory): 4, 7,7

Sorted List III (in Memory): 6

Persisted Elements: 1,2, 2,3

Act 702 is then again applied to formulate the following
state:

Sorted List I (in Memory): 5, 8

Sorted List II (in Memory): 4, 7,7

Sorted List III (in Memory): 6

Merged Sorted List: 4, 5,6,7,7, 8

Persisted Elements: 1,2, 2,3

The remainder of the merged sorted list may then be
appended to the persisted elements to form the following
persisted and sorted elements:

Persisted Elements: 1,2,2,3,4,5,6,7,7,8

In a second example of streamed elements, there might be
a stream that includes multiple elements, but also includes a
notification at some point that additional elements that are
beyond that point only include values that have lower priori-
tized sort priority than any of the values in the plurality of
sorted lists. Thus, the method 700 may be performed to sort
all of the elements up to the point of that notification. Then,
the method 700 may separately be performed for all elements
received in the stream after that point until the stream ends or
until a similar notification is encountered again.

Accordingly, the principles described herein provide an
effective mechanism to merge multiple input sorted lists into
a single merged sorted list, and for formulating the input
sorted lists, even of the unsorted sequence is received over a
stream, or is too large to fit in memory at the same time.

The present invention may be embodied in other specific
forms without departing from its spirit or essential character-
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:

1. A computer program product comprising one or more
computer-readable storage media having thereon computer-
executable instructions that are structured such that, when
executed by one or more processors of the computing system,
cause the computing system to perform a method comprising
an act of merging a plurality of sorted lists to form a merged
sorted list, the act merging the plurality of sorted lists com-
prising:

an act representing a first sorted list and a second sorted list

contiguously in a first plurality of elements in a first
array in memory

an act of establishing a first input cursor at the first element

in the first sorted list in the first array;

an act of establishing a second input cursor at the first

element in the second sorted list in the first array;

an act of formulating a second array in memory, the second

array including at least a portion that includes a second
plurality of elements equal in number to the first plural-
ity of elements;

an act of sequentially assigning values to the elements of

the second plurality of elements to thereby formulated a
first merged sorted list of the first and second sorted lists,

10

15

20

25

30

35

40

45

50

55

60

18

the act of sequentially assigning comprising performing

the following for each of the first element through a

subsequent element in the secondary plurality of ele-

ments:

an act of comparing a value at an element pointed to by
the first input cursor with a value at the element
pointed to by the second input cursor;

if the value at the element pointed to by the first input
cursor satisfies a sorting priority with respect to the
value at the element pointed to by the second input
cursor; an act of populating the corresponding ele-
ment of the second plurality of elements with the
value at the element pointed to by the first input cur-
sor; and an act of moving the first input cursor to a next
element in the first sorted list of the first plurality of
elements if there are any further elements in the first
sorted list, and if there are not any further elements in
the first sorted list, the corresponding element of the
second plurality of elements is the subsequent ele-
ment of the second plurality of elements, and thus the
method further includes an act of further populating a
remainder of the second plurality of elements with
any remaining unprocessed elements of the second
sorted list from an element pointed to by the second
input cursor; and

if the value at the element pointed to by the first input
cursor does not satisfy a sorting priority with respect
to the value at the element pointed to by the second
input cursor; an act of populating the corresponding
element of the second plurality of elements with the
value at the element pointed to by the second input
cursor; and an act of moving the second input cursor
to a next element in the second sorted list of the first
plurality of elements if there are any further elements
in the second sorted list, and if there are not any
further elements in the second sorted list, the corre-
sponding element of the second plurality of elements
is the subsequent element of the second plurality of
elements, and thus the method further includes an act
of further populating a remainder of the second plu-
rality of elements with any remaining unprocessed
elements of the first sorted list from an element
pointed to by the first input cursor.

2. The computer program product in accordance with claim
1, wherein the first array includes a third sorted list arranged
contiguously with the first plurality of elements in the first
array to form a first superset plurality of elements in the first
array, the method further comprising an act of merging the
first merged sorted list with the third sorted list comprising:

an act of establishing the first input cursor at the first

element in the first merged sorted list in the second
plurality of elements in the second array;

an act of establishing a second input cursor at the first

element in the third sorted list in the first array;

an act of sequentially assigning values to the elements of

the first superset plurality of elements in the first array to
thereby formulate a second merged sorted list of the first,
second and third sorted lists,

the act of sequentially assigning values to the elements of

the first superset plurality of elements comprising per-

forming the following for each of the first element

through a subsequent element in the first superset plu-

rality of elements:

an act of comparing a value at an element pointed to by
the first input cursor with a value at the element
pointed to by the second input cursor;

US 9,418,089 B2

19

if the value at the element pointed to by the first input
cursor satisfies the sorting priority with respect to the
value at the element pointed to by the second input
cursor; an act of populating the corresponding ele-
ment of the first superset plurality of elements with
the value at the element pointed to by the first input
cursor; and an act of moving the first input cursor to a
next element in the first merged sorted list of the first
plurality of elements if there are any further elements
in the first merged sorted list, and if there are not any
further elements in the first merged sorted list, the
corresponding element of the first superset plurality
of elements is the subsequent element of the first
superset plurality of elements, and thus the method
further includes an act of further populating a remain-
der of'the first superset plurality of elements with any
remaining unprocessed elements of the third sorted
list from an element pointed to by the second input
cursor; and
if the value at the element pointed to by the first input
cursor does not satisty the sorting priority with
respect to the value at the element pointed to by the
second input cursor; an act of populating the corre-
sponding element of the first superset plurality of
elements with the value at the element pointed to by
the second input cursor; and an act of moving the
second input cursor to a next element in the third
sorted list of the first array if there are any further
elements in the third sorted list, and if there are not any
further elements in the third sorted list, the corre-
sponding element of the first superset plurality of
elements is the subsequent element of the first super-
set plurality of elements, and thus the method further
includes an act of further populating a remainder of
the first superset plurality of elements with any
remaining unprocessed elements of the first merged
sorted list from an element pointed to by the first input
CUrsor.
3. The computer program product in accordance with claim
1, wherein the plurality of sorted lists is a first plurality of
sorted lists, and the merged sorted list is a first merged sorted
list, the method further comprising:
an act of persisting in sort order those higher prioritized
values of the merged sorted list that have a more priori-
tized sort priority;
an act of removing the persisted values from the first plu-
rality of sorted lists;
an act of accessing at least one additional element;
an act of formulating a second plurality of sorted lists using
a combination of the at least one additional element and
any remaining sorted lists of the first plurality of the
sorted lists that remain after the act of removing; and
an act of formulating a second merged sorted list using the
second plurality of sorted lists.
4. The computer program product in accordance with claim
1, wherein the act of merging the plurality of sorted lists to
form the merged sorted list is performed in response to an act
of detecting a notification that additional sorted lists in a
stream of sorted lists that are beyond the plurality of sorted
lists only include values that have lower prioritized sort pri-
ority than any of the values in the plurality of sorted lists.
5. The computer program product in accordance with claim
4, wherein the plurality of sorted lists is a first plurality of
sorted lists, and the merged sorted list is a first merged sorted
list, the method further comprising:

5

20

25

40

45

50

20

after the act of formulating the first merged sorted listed, an
act of formulating a second merged sorted list using a
plurality of elements received in the stream of sorted
lists after the notification.
6. The computer program product in accordance with claim
5, the method further comprising:
an act of appending the second merged sorted list to the end
of the first merged sorted list.
7. The computer program product in accordance with claim
1, wherein the plurality of sorted lists are ordered in the first
array such that a longest sorted list of the plurality of sorted
lists is last in the first array.
8. The computer program product in accordance with claim
1, wherein the method further comprises the following prior
to the act of merging the plurality of sorted lists:
an act of arranging the plurality of sorted lists in order of
increasing size such that any sorted list within the first
array is equal to or smaller in number of elements than
the number of elements of any of the sorted lists that
appear after the given sorted list within the first array.
9. A method comprising an act of merging a plurality of
sorted lists to form a merged sorted list, the method compris-
ing:
an act of accessing a plurality of sorted lists including a first
sorted list and a second sorted list;
an act representing the first sorted list and the second sorted
list contiguously in a first array in memory, the portion of
the first array that includes the first and second sorted
listing including a first plurality of elements;
an act of establishing a first input cursor at the first element
in the first sorted list in the first array;
an act of establishing a second input cursor at the first
element in the second sorted list in the first array;
an act of formulating a second array in memory, the second
array including a portion that includes a second plurality
of elements equal in number to the first plurality of
elements;
an act of sequentially assigning values to at least some of
the elements of the second plurality of elements, the act
of sequentially assigning comprising:
an act of populating a first element of the second plural-
ity of elements, the act of populating the first element
comprising:
an act of comparing a value at an element pointed to
by the first input cursor with a value at the element
pointed to by the second input cursor;
if the value at the element pointed to by the first input
cursor satisfies a sorting priority with respect to the
value at the element pointed to by the second input
cursor; an act of populating the first element of the
second plurality of elements with the value at the
element pointed to by the first input cursor; and an
act of moving the first input cursor to a next ele-
ment, if any, in the first sorted list of the first plu-
rality of elements; and
if the value at the element pointed to by the first input
cursor does not satisfy a sorting priority with
respect to the value at the element pointed to by the
second input cursor; an act of populating the first
element of the second plurality of elements with the
value at the element pointed to by the second input
cursor; and an act of moving the second input cur-
sorto a next element, if any, in the second sorted list
of the first plurality of elements; and
an act of populating a second element of the second
plurality of elements after the act of populating the

US 9,418,089 B2

21

first element of the second plurality of elements, the

act of populating the second element comprising:

an act of comparing a value at an element pointed to
by the first input cursor with a value at the element
pointed to by the second input cursor;

if the value at the element pointed to by the first input
cursor satisfies the sorting priority with respect to
the value at the element pointed to by the second
input cursor; an act of populating the second ele-

22

if the value at the element pointed to by the first input

cursor does not satisty the sorting priority with
respect to the value at the element pointed to by the
second input cursor, an act of moving the second input
cursor to a next element in the second sorted list of the
first plurality of elements;

the method further comprising an act of populating a

fourth element of the second plurality of elements
after the act of populating the third element of the
second plurality of elements, the act of populating the

ment of the second plurality of elements with the 10 i

value at the element pointed to by the first input fourth element comprising:]

cursor; and an act of comparing a value at an element pointed to

if the value at the element pointed to by the first input by the first input cursor with a value at the element

cursor does not satisfy the sorting priority with pointed to by the second input cursor;

respect to the value at the element pointed to by the ;5 if the value at the element pointed to by the first input

second input cursor; an act of populating the sec- cursor satisfies the sorting priority with respect to

ond element of the second plurality of elements the value at the element pointed to by the second

with the value at the element pointed to by the input cursor; an act of populating the fourth ele-

second input cursor. ment of the second plurality of elements with the
10. The method in accordance with claim 9, wherein the 20 value at the element pointed to by the first input

plurality of sorted lists are ordered in order of increasing size
in the first array.
11. The method in accordance with claim 9,
wherein the act of populating the second element of the
second plurality of elements further comprises the fol-
lowing: 25
if the value at the element pointed to by the first input
cursor satisfies the sorting priority with respect to the
value at the element pointed to by the second input
cursor; an act of moving the first input cursor to a next
element in the first sorted list of the first plurality of 30
elements; and
if the value at the element pointed to by the first input

cursor; and
if the value at the element pointed to by the first input
cursor does not satisfy the sorting priority with
respect to the value at the element pointed to by the
second input cursor; an act of populating the fourth
element of the second plurality of elements with the
value at the element pointed to by the second input
cursor.
13. The method in accordance with claim 12,
wherein the act of populating the fourth element of the
second plurality of elements further comprises the fol-
lowing:
if the value at the element pointed to by the first input

cursor does not satisty the sorting priority with
respect to the value at the element pointed to by the
second input cursor, an act of moving the second input

cursor satisfies the sorting priority with respect to the
value at the element pointed to by the second input

cursor to a next element in the second sorted list of the 3 cursor; an act of moving the first input cursor to a next
first plurality of elements; element in the first sorted list of the first plurality of
the method further comprising an act of populating a elements; and
third element of the second plurality of elements after if the value at the element pointed to by the first input
the act of populating the second element qf the secqnd 20 cursor does not satisfy the sorting priority with
plurality of elements, the act of populating the third respect to the value at the element pointed to by the
element comprising: . second input cursor, an act of moving the second input
an act of comparing a value atan element pointed to cursor to a next element in the second sorted list of the
by.the first input cursor W.lth a value at the element first plurality of elements;
pointed to by the second input cursor: the method further comprising an act of populating a
if the value at the element pointed to by the first input 45 fifth el £ th P d % lity of lp P Ig
cursor satisfies the sorting priority with respect to element ol the second pluraity ol elements alter
the value at the element pointed to by the second the act of populating the fourth element of the second
input cursor; an act of populating the third element plurality of ele.m.ents, the act of populating the fifth
of the second plurality of elements with the value at element comprising; .
the element pointed to by the first input cursor; and 50 an act of comparing a value atan element pointed to
if the value at the element pointed to by the first input by the first input cursor with a value at the element
cursor does not satisfy the sorting priority with pointed to by the second input cursor;
respect to the value at the element pointed to by the if the value at the element pointed to by the first input
second input cursor; an act of populating the third cursor satisfies the sorting priority with respect to
element of the second plurality of elements with the the value at the element pointed to by the second
value at the element pointed to by the second input input cursor; an act of populating the fifth element
Cursor. ofthe second plurality of elements with the value at
12. Th? method in accor dange with clajm 11, the element pointed to by the first input cursor; and
wherein the act of populating the third element of the if the value at the element pointed to by the first input
second plurality of elements further comprises the fol- " cursor does not satisfy the sorting priority with

lowing:

if the value at the element pointed to by the first input
cursor satisfies the sorting priority with respect to the
value at the element pointed to by the second input
cursor; an act of moving the first input cursor to a next
element in the first sorted list of the first plurality of 65
elements; and ® ok % % %

respect to the value at the element pointed to by the
second input cursor; an act of populating the fifth
element of the second plurality of elements with the
value at the element pointed to by the second input
cursor.

